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We investigate the behavior of a magnetic field in a viscous fluid cosmological 
model where the expansion 0 in the model is proportional to a ~, the component 
of shear tensor ~r~, which leads to A = (BC)L We also assume that the shear 
viscosity is proportional to the rate of expansion in the model. The behavior of 
the model in the absence of a magnetic field and viscosity is discussed as are 
some other physical and geometrical aspects. 

1. INTRODUCTION 

It is well known that in the early stages of the universe, when neutrino 
decoupling occurs, matter behaves like a viscous fluid. Misner (1967, 1968) 
has studied the effect of viscosity on the evolution of cosmological models. 
The role of viscosity in cosmology is investigated by Weinburg (1971), 
Nightingale (1973), and Klimek (t975). Heller (1974) obtained a dust-filled 
viscous universe in general relativity. Belinskii and Khalatnikov (1976) 
investigated the effect of viscosity in cosmological evolution. Belinskii and 
Khalatnikov (1977) also studied the effect of viscosity in a Friedmann 
model in which the coefficient of viscosity is assumed to be a function of 
energy density. Roy and Prakash (1976, 1977) investigated viscous fluid 
cosmological models in which the two coefficients of viscosity are consid- 
ered as constants. Banerjee and Santos (1983) obtained a Bianchi type I 
viscous fluid cosmological model in which the coefficients of bulk and shear 
viscosity are proportional to the energy density, and the fluid's shear scalar 
is proportional to volume expansion. 
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Mohanty and Pattanaik (1991) obtained an anisotropic spatially ho- 
mogeneous bulk viscous model of the universe without shear viscosity. Bali 
and Jain (1991) obtained a viscous fluid cosmological model filled with a 
stiff fluid with shear viscosity but without bulk viscosity. Banerjee et aL 
(1985) obtained a Bianchi type I viscous universe where shear and bulk 
viscosity coefficients are power functions of the energy density and equa- 
tion of state for a stiff fluid (p =e). Zel'dovich and Novikov (1971) 
investigated the presence of a strong magnetic field exhibited by galaxies 
and interstellar spaces, which gives rise to a kind of viscous effect in the 
fluid flow (Cowling, 1957). Misner et aL (1973) investigated a universe in 
which there is a strong magnetic field contributing to the total energy of the 
system. The coefficients of viscosity decrease as the universe expands. 

Bali and Jain (1989) obtained an anisotropic magnetized viscous fluid 
cosmological model in general relativity where the free gravitational field is 
of Petrov type D and the coefficients of shear viscosity are proportional to 
the rate of expansion in the model. Banerjee and Sanyal (1986) obtained 
some homogeneous anisotropic cosmological models with viscous fluid and 
magnetic field assuming a linear relation between the matter density s, the 
shear scalar a, and the expansion scalar 0 together with p = Vs. Bali (1985) 
obtained an expanding and shearing magnetoviscous fluid cosmological 
model in which the scalar of expansion 0 is proportional to a~, the 
component of the shear tensor cry, and the coefficient of shear viscosity is 
proportional to the rate of expansion 0 in the model. The assumption 
0 oca~ leads to A = (BC)".  Bali (1985) obtained a magnetoviscous fluid 
model for n = 1. 

In this paper we have obtained a generalized expanding and shearing 
magnetoviscous fluid cosmological model in general relativity for general 
value of n. Various physical and geometrical aspects of the model are 
discussed. The behavior of the model in the absence of magnetic field and 
viscosity is also discussed. 

We consider a cylindrically symmetric metric in the form 

ds 2 = A2(dx 2 - dt 2) + B 2 dy 2 + C dz 2 (1.1) 

where the metric potentials are functions of time alone. The energy- 
momentum tensor is taken to be the sum of the energy momentum tensors 
Mij corresponding to the viscous fluid (Landau and Lifshitz, 1963) and E;j, 
the electromagnetic field (Lichnerowicz, 1967), given by 

Mij = (e "~ p)uil) j + Pgij -- rl(Vi;j + vj;i + VjVtVi;t + ViVtVj;l) 

2 t 
- (~  ---~ rl )v; ,(go + vivj) (1.2) 

and 
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2 1 Ei: = (t{lhl (viv: + -~ gi: ) - hihj } (1.3) 

where e is the density, p the pressure, ~/ and ~ are the two coefficients of 
viscosity, and v i is the flow vector satisfying the equation 

gi:viv: = - 1 (1.4) 

where fi is the magnetic permeability and hl the magnetic flux vector, 
defined by 

= 2~ eiJkJFktv: (1.5) 

where Fk~ is the electromagnetic field tensor and e0kt is the Levi-Civita 
tensor density. A semicolon stands for covariant differentiation; we assume 
the coordinate to be comoving so that v l =  0 = v2= v 3 and v4= I/A. We 
take the incident magnetic field to be in the direction of the x-axis so that 
hi ~ 0, h 2 = 0 = h 3 = h 4. This leads to F~z = Fl3 = 0 by virtue of (1.5). Also 
F~4 = F24 = F34 = 0 on account of the assumption of infinite conductivity of 
the fluid. Hence, the only nonvanishing component of Fi: is Fz3. The first 
set of Maxwell's equations 

ro;k + Fjk;i + Fkl;j = 0 (1.6) 

leads to F23 = const = H (say). 
The field equations 

1 R~ - ~ Rg{ + Ag~ = - 8~T~ (1.7) 

for the line element (1.1) are 

1 ( B44 C44 B2C4 A4B4 A4C4\ 
B C BC ~-h--Y+-X6-)  - A  

=87 , Ip  2r/A4 @ 2q)v~ ' H 2 
A 2 3 2fi-BTC~I 

l (  C44 A~ A]'~ 
c x +AV-A 

= 8 ~ I p  2r/B4 (~ 2 q)v~' -~ H2 
AB - -3 2fi~-C 43 

1 ( B44 A44 . A2"~ 

7 ~ ~ A . ~ ) - A  
H z 8+ 

(1.s) 

(1.9) 

(1.1o) 
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The subscript 4 on 
respect to t. 

I I/A4B4 A4C4 B4Ca~ [ - jT / + A 
H 2 

= 87Z(e-1 2/'B-TC2 ) (1.l l) 

A, B, and C denotes ordinary differentiation with 

2. SOLUTION OF THE FIELD EQUATIONS 

Equations (1.8)-(1.11) are four equations in five unknowns A, B, C, 
,, and p. We assume that expansion (0) in the model is proportional to the 
eigenvalue o-~ of the shear tensor a~. This condition leads to 

A = (BC)" (2.1) 

From equations (1.8)-(1.10) and (2.1) we have 

I/B,A C44 2B4 C4'~ B4C 4 B44 n ?e + c + - - "  8 c  B 

= 1Ot~(BC) n ~ nB4 H2(BC) " (2.2) 
B -- 2nfLB2C 2 

B44 - C44 C ~ )  (2.3) 

From equations (2.2) and (2.3) we have 

1 H2(BC) n (~4 ~4) C44B4 B44 C4.jI_ B4C4 (C4 B4) (2.4) 
2 n - 1  2ftB2C 2 -k C B -  B C 

Putting BC = p and B/C  = v in equations (2.3) and (2.4), we get 

( /~V4~ = -  1 67~/'/#n(~) (2.5) 
v /4 

and 

16nil2# 2n 
#44 + 16~zr//~/~4 + = 0 (2.6) 

bT(2n -- 1)# 

To get a determinate solution, we assume that qc~0, which leads to 

l(n + 1)/~, (2.7) 
~/ = /~,+1 

where t is a proportionality constant. 
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Using (2.7) in (2.6), we get 

##44 + 16rcl(n + 1)p] + K #  z" = 0 (2.8) 

where 

1 6 n H  z 
K =  

fi(Zn - 1) 

Putting IX4 =f(ix) in equation (2.8), we have 

af  2 -f 32rffn + 1){/2 + 2Klx2,_ ~ = 0 (2.9) 
as, Ix 

From (2.9) we get 

f2  = mix --32rt(n + 1 ) 1  K/x2 (2.10) 
n + 16rffm + 1)/ 

where m is a constant of  integration. 
Using (2.10) in (2.5), we get 

(~ + n ) m /  j (2 . t l )  

where/7 and k are constants of  integration and ~ is an arbitrary constant. 
By suitable transformations of  coordinates, the metric (1.I) reduces to the 
form 

dS2 = TZ" dXZ - T I -  dT2 + T '  + r 1 + ~--~j  d Y  2 

+ r ' - 7  1 + , /na)  a z  2 (2.12) 

where 7 is an arbitrary constant and 

K T  2 
f 2  = n a T -  2~ _ ~ (2.13) 

n + ~  

If  n = 1, then we get the model obtained by Bali (1985). 
In the absence of  a magnetic field, the metric (2.12) reduces to 

T 2 
d S  2 = T2,, d X  2 m T  -2;< d T  2 + T 1 + 72-r1~ + l) d y 2  + T 1 -~2~i(~ + 1) d Z  2 

(2.14) 

Also in the absence of  viscosity, the metric (2.14) reduces to 

d S  z =  T 2 " d X 2 - X - - - - d T 2 +  Ti+r2i)'dy2+ T ~ - ~ 2  ~ d Z  z (2.15) 
na 
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3. S O M E  PHYSICAL AND GEOMETRICAL FEATURES 

The pressure and density for the model (2.12) are given by 

8rip = ~2,, [(4n + 1 _]/2)f2 y2KT, f 
4T2 2(~ + n)x//m (1 +JT' /x /m ) 

y 2 K 2 T 2 ( , +  1) 1 [ -2, KT 2 '~-I 

~fZ(2n--1) 8 g g f ( n + l )  K ( 2 n - 1 )  A 
+ 3T2(,+o + T , + ~ +  4T 2 

(3.1) 

and 

8ne =-~1- E(4n + 1 "  y2)fz y2KT, f 
T2.L 4T2 2(~ + n)~/m (1 +fl"/~c/m) 

y 2 K Z T 2 ( ~ + 1 )  ] K(2n -- 1) 
-- 4(a + n)2m(1 + f T ' / x / m ) l  4T 2 + A (3.2) 

where f =  [mT -2" - KT2/(n + ~)] ~/2. 
The model has to satisfy the reality conditions: 

(i) p > 0 .  
(ii) e - p  2 0. 

Condition (i) leads to 

(4n + 1 - y 2 ) f 2  y2KT, f 

4T 2 2(~ + n) x/m (1 +fT~/x/m) 

1 / 2, KT2 "~ 7 2 K 2 T 2 ( ~ +  1) t----zlmT- + 
/ 

4(~ + n)2m(1 + fl ' , /x/m)2 T~ \ n + ~ ] 

+ ~(2n - 1)f 2 8n(n + 1)f+ K(2n - 1) AT z" > 0 (3.3) 
3 T 2 ~ T 1 - n 4 T  2 - 2. 

while condition (ii) yields 

I [ -2, KT2 '~ ~(2n - 1)f 2 8~z(n + 1)f 
T2,,+2~m~T + - ~ - ~ ) +  3TZ,,+ 2 -k Tn+, 2A-<0 (3.4) 

which imposes a condition on A. 
The scalar of expansion, 0 calculated for the flow vector v t is given by 

0 = (n + 1)f (3.5) 
T n + l  
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The rotation o9 is identically zero and the shear is given by 

0 2 1 IfZ(4n 2 - 4n + 1 + 372) 72K2T2(~+ l) 
= 4 - ~  ,._ 3T 2 + (o~ + n)2m(1 +JT~/x/m) 2 

272KT~f 1 
+ (o~ + n)~-m-~-+-JT~/~/mi J (3.6) 

The nonvanishing components of  the conformal curvature tensors are 

~2 1 ~ ( 1 - ~ 2 - 2 n - 6 n y ) f  2 [m~T-2~+KT2/(n +~)](2n + 3 3 ' -  1) 
C~2=6- ~ / 

+ 

2T 2 

7KfT~(3~ + 6 - 6n - 27) 

2(~ + n)~/m (1 +fT' /x /m)  

J3 1 F. ( 1 - -  72 - -  2n + 6ny)f 2 
C13 = U ~  I 

2T 2 

7K2T 2(~+ 1)(6c~ + 6 - 27) 1 
+ 4--~ + n-~rn-~- ~ ~T-2/~f~-~ j (3.7) 

[m~T -2~' + KT2/(n + ~)](2n - 37 - 1) 
2T 2 2T 2 

7KfT~(6 + 3c~ + 27 - 6n) 1 7 K2 T 2(= + 1)(60~ -a t- 6 + 27)1 

2(~ + n)a/m (1 +JT~/~/m) - 4  (o~ + n)Zm(1 +fT~/a/m-)J  (3.8) 

C23 _ ~ F(2n - 1 + 72)f 2 [m~T -2~ + KTZ/(n + ~)](1 - 2n) 
23 - 6T2n k T2 T2 

272KjT~ 72KZT2(~ + i) .7 / 

+ (~ + n) ~/m ( 1 +fT~/~/m) + (~ + n) 2m( 1 +jT~/~/m) 2j (3.9) 

Hence, the space-time is of nondegenerate Petrov type I in general. For 
large values of T, the space-time is conformally flat. 

The expression for 

E 4 magnetic energy 

material energy 

is 

E__~ = (2n - 1)KT 2n 

x {4[(4n + 1 - 72)f2 ,2KT~ 
T2 2(~ + n)~/rn (q + fT~'/~/m) 

-- 72K2T 2~+4 g ( 2 n -  1 ) Z  2n  mz2n + 21t  -1 
4(~ + n)2m(1 +fT~/~/m) 2 4 + _~ (3.10) 

Since l i m r ~ o E 4 / e ~ 0 ,  the material energy is more dominant than the 
magnetic energy near a singularity. There is a singularity in the model 
(2.12) at T = 0, which may be explained as a matter distribution along the 
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axis which carries art electric current  producing the transverse magnetic  
field. The model  ( 2 . 1 2 ) s t a r t s  expanding at T = 0 ,  goes on expanding 
indefinitely, and the expansion in the model  stops at T = ~ .  The nonvan-  
ishing componen t s  o f  the conformal  curvature  tensor for  perfect fluid 
distributions are given by 

1 
CI~ - 12T2~ + i [m( 1 - ~2 _ 2n - 6n~)] (3.11) 

C133 _ I +~ [m(l -- y2 _ 2n + 6n),)] (3.12) 
12T zn 

1 
C2] = 6TZ~ + 2 [m(2n - t) + ~2)] (3.13) 

Hence, the space-time is o f  Petrov type D for  ~ = 0 and n = 0 also, and o f  
nondegenerate  Petrov type I otherwise. 

Since limr.~ ~a/O ~ O, the model  does not  approach  isotropy for large 
values o f  T. 
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